Chapter 4: Controlling the Sequence of Operations

Table of Contents

The previous chaplers showed you how to write programs
that sequentially execute a series ol staps. This chapter
describes insiruclions that enable you to change the order in
which program slaps are executed.

Sequence

Introduction

cutes program steps in the same
~or problems that are
git-line” program that
rakes once, from beginning to

, however, cannot be solved efficiently by

Why Change
the Sequence?

You may have a problem, for example, that requires the
same key sequence to be executed many times.
Although you could probably repeat the key sequence
every place itisneeded, the program could become very
large, perhaps exceeding the memory capacity of the
calculator. You could also spend a lot of time storing the
program in memory.

Transfer instructions allow you to solve problems
involving repetition by directing the calculator to
execute a key sequence as many times as needed. By
using these instructions, you can shorten a program and
make it easier to enter and edit.

Besides enabling a program to repeat a key sequence,
transfer instructions allow a program to skip a sequence
of keystrokes. This feature is particularly powerful
when transfer instructions are used in conjunction with
decision-making instructions, as deseribed in the next
chapter.

4-2 Controlling the Sequence

m mMm M mMm mMm M M

wm M m

5l

. m

L

B B BN B BN BN B BN OB OB OB RN e

The DFN
Instruction

The transfer functions are listed below.

Mnamonic Action

GTL

In a program, GTL (go to label) transfers
control to a program step vou have labeled.

From the keyboard, GTL sets the program
counter to a program step you have
labeled, but does not start program
execution.

GTO In a program, GTO (go to) transfers control

to the specified program step,

From the keyboard, GTO sets the program
counter to a specified program step, but
does not start program execution.

SBL In a program or from the keyboard, SBL
(subroutine label) transfers control to a
subroutine you have labeled.

SBR In a program or from the keyboard, SBR
(subroutine) transfers control to the
subroutine at the specified program step.

Note: Within a program, RUN ean be used with a
transfer instruction to transfer control between
programs that are stored in separate areas. For
information on this use of transfer instructions, refer to
page 8-34.

The DFN (define) instruction lets you create your own
function-key menus. These menus, referred to as user-
defined menus, control the order of program execution
based upon the function key that you press.

The DFN instruction can be used only within a program.

Contrelling the Sequence 4-3

Before Proceeding with this Chapter

Before working the examples in the remainder of this guide,
you should be familiar with the baslc programming skills
covered in the first three chapters. If you have difficulty with
an example, refer to those chapters for Instructions.

Using Program Labels

A program label Is an Instruction that you can use to identity a
particular location in a program. Typically, you use a labsl to
mark the beginning of a sequence of instructions to which

you plan to transfer program control.

m m "

- L

Assumptions From this point forward, you should know how to Labeling & To place alabel instruction ina program, use the key
activate and exit the learn mode, clear program Program sequence:
memory, display the program counter, enter uppercase E Segment
and lowercase messages, and run a program stored in [LBLIaa
Program memory- 3 where aa is any two alphanumeric characters. For
s example, [2nd](LBL] AA places the mnemonic “LBL AA"
Formal for Up to now, program examples have been presented in a E : ;
Program format thart shows each keystroke required to enter a :;1]3 ptrosram atthe current location of the program
Examples program. In remaining chapters: unter.

After you press [LBL], the calculator interprets your
next keystrokes as alphanumeric characters. This
eliminates the need for you to activate the alpha mode to
enter the two characters of the label. You can use any
combination of uppercase and lowercase letters, digits,
and punctuation symbolsin the label name.

» Examples show only the mnemonic form of a program
instruction, For example, PAU represents the key
sequence [PAUSEL If you don't recognize a
mnemoni¢, refer to Appendix C for a complete list of
instruction mnemonics.

» Alpha messages are shown in single quotes. You must
remember to activate and exit the alpha mode to
enter these messages. Alpha key sequences, where
shown, assume that your keyboard is not in lowercase
lock (LG indicator not visible in the display).

Some examples of labels are shown below.

Label Key Sequence

LBL fx [znd|[LBL] [2nd] F [2nd] X
LBL 10 [2nd][LBLI10O

LBLZ1 [2nd] [LBL) Z1

LBL Aa [2nd] [LBL] A [2nd] A

» Functionally related instructions are grouped
together. The instructions are not necessarily
grouped as they would be in a printed listing.

m m m m m

For example, the last program in Chapter 3 is shown

You can label any part of a program; the presence of the
below in mnemonic form.

label does not interfere with program execution or any
calculations in progressin the program.

= : You can use as many labels as you need in a program.

P Program Meemonics. Gomments However, you should not use ghe same label mcﬁ'e than

0000 'ENTER RADIUS' Creates message once in the same program. If you repeat a label, any

0012 BRK Waits for radius transfer to that label is always directed to the first

0013 ¥ 3 * Pl occurrence of the label. (The caleulator begins searching
* 43 = Calculates volume foralabel at program address 0000 and will not find the

0022 voL=' Creates message additional occurrences of the label.) Refer to ' ‘Listing

0026 COL 16 MRG = Positions cursor and Program Labels' in this chapter for details on listing the

merges labels used in program memory.
0030 HLT Stops program

(continued)

4-4 Controlling the Sequence

m-m m M

Controlling the Sequence 4-5

Using Program Labels (Continued)

Why Use
Labels?

4-6

The field of a transfer instruction must specify a transfer
location. Although you can identify the transfer location
by giving its step address, it is more flexible touse a
label. A label provides you with a method of identifying
aprogram location that is not dependent upon the
numeric address of the location,

The step address of an instruction changes when you
insert or delete instructions ahead of it. By using a label
to identify a program location, you do not have to keep
track of these changes. The relative location of the label
remains constant, eliminating the need to correct any
numeric transfer addresses each time you insert or
delete other program instructions.

Consider a program that contains the segment shown
below. If you insert a RCL B instruction before this
segment, you change the address of all instructions that
follow the inserted instruction.

Before Insertion After Insertion

PC= Mnemonics PC= Mnemonics

0130 ‘Pl o= 0130 RCL B

0133 PAU 0132 *Pl =
0135 PAU

Without labels, you must change any transfer references
to the * instruction originally located at 0130 to show
that the new location of the instructionis 0132.Ifa
program has many such references, correcting them is
time-consuming and can cause mistakes,

Controlling the Sequence

T

With lal_mls, you can insert an instruction without
correcting any references.

Before Insertion After Insertion

PC= Mnemonics PC= Mnemonics

0130 LBL AA 0130 RCL B

0133 Pl o= 0132 LBL AA

0136 PAL 0135 *Pl =
0138 PAU

The segment still begins at the point marked by LBL AA.
fﬁ.n y transfer to LBL AA now transfers to step 135
instead of step 133.

Controlling the Sequence 4-7

Using Go To Label

The GTL {go to label) instruction transfers program control to
the first instruction following a specified label.

Transferring
Control to
alLabel

4-8

The normal order of program execution is from program
step 0000 to the end of the program. By including a GTL
instruction in the program, you can transfer program
control to any labeled location in the program. The
program runs sequentially from the new location until
another transfer instruction is executed or the program
is stopped.

To enter the GTL instruction, use the key sequence:
[GTL]aa
where aa corresponds to the label in the program,

The following illustrations show how the GTL
instruction affects the flow of program exeeution. In the
illustration on the left, the GTL instruction causes the
program to skip several instructions. In the illustration
on the right, the GTL instruction causes the program to
repeat several instructions. Program sequences such as
that on the right are called loops.

Skip Instructions Repeat Instructions

GTLAA

LBL Z%

LBLAA

GTLZZ

Controlling the Sequence

Example

Running the
Example

A counting loop is a good way to illustrate a transfer
instruction. The following program uses a transfer
instruction to repeat the key sequence + 2 = PAU. The
PAU instruction is included in the program so that you
can see the result of the + 2 =operation. The GTL AA
instruction transfers control back to the beginning of the
program, causing the sequence to be repeated endlessly.

By repeating the sequence, the GTL instruction creates a
loop that counts by twos.

PC= Program Mnemonics Comments

0000 LBL AA Labels segment

0003 + 2 = Adds 2

0006 PAU Pauses for one second

0007 GTL AA Transfers control to
label AA

Because the program does not include a means to exit
the loop, this type of loop is called an infinite loop. To
stop an infinite loop, you must press or [BREAK],
Methods for exiting a loop under program control are
described in the next chapter.

Run the program.
Procedure Press Display
Clear the display CLEAR 0.
Run the program {PGM» 2
4,
Stop the program HALT 6.
Controlling the Sequence 4-9

UsingGoTo

In some cases, you may prefer to transfer control to an
instruction by referring to its program address instead of
using a label. The address of an Instruction is the step
number of the instruction as shown by the calculator’s
program counter.

Determining
the Address of
an Instruction

Transferring
Control by
Address

4-10

To find the program address of an instruction you have
stored in program memory:

1. Press and use ¢1st?, (PC?, or (<END) to enter
the learn mode at the point nearest the instruction.

2. Use the [=] and [=] keys to position the cursor on the
instruetion. The address of the instruction is shown

by the program counter.

For example, suppose you want to find the program
address of the PAU instruction in the program entered
on page 4-9. If you apply the procedure described above
to place the cursor over PAU, the display should show:

In this case, the address of the PAU instruction is 0006,

The GTO (go to) instruction transfers controltoa
specified program address. To enter a GTO instruction in
a program, use the key sequence

[INV] [znd] [GTLI et

where nnunn represents the address of the instruction
you want to execute next. For example, GTO 0150
transfers control to the instruction at program address
0150.

You can use short-form addressing, as described inthe
“‘Memory Operations’’ chapter of the TI-95 User’s
Guide, to specify the address.

Controlling the Sequence

.

-

e

i
i

L

-

]

—_—

Using Subroutines in a Program

As you begin to write programs that are more complex, you
may find that you need to execule the same sequence of
instructions from several different locations in the program.
AHhough you eould store the sequence at each point where
you want It to execute, you can save yourself time by designing
the sequence as a subroutine and storing it only once.

Whatisa
Subrouting?

A subroutine is a sequence of instructions that can be
executed, or called, from any pointin the program.
When you call a subroutine, control is transferred to the
beginning of the subroutine. After the subroutine has
executed, control returns to the instruction that follows
the subroutine call. The word *‘call”’ is understood by
programmers to mean that control will return to the
original segment after the subroutine has been
executed.

To include a subroutine in a program, use the following
procedure.

1. Store a label at the beginning of the subroutine.
(Although you can transfer control to the step address
of a subroutine, using a label has the advantages
stated earlier.)

2. Store the instructions that make up the subroutine.

3. Store a RTN (return)instruction at the end of the
subroutine. To enter a return instruction, press

[RTN].

The following illustration shows how a subroutine
affects the flow of program execution. The SBL
instruction (described later in this section) is used to call
the subroutine.

Main Program Subroutine
_i—-b LBL A
SBL A
RTN

(continued)

Controlling the Sequence 4-11

Using Subroutines in a Program (Continued)

Levels of
Subroutines

You can design a program so that one subroutine calls
another subroutine. In this case, the RTN instruction at
the end of the second subroutine returns control to the
first subroutine, which returns control to the original

program segment.

The caleulator allows a maximum of eight “‘levels’ of
subroutines to be active at one time. The illustration
below shows two levels of subroutine calls.

2nd Level

Main Program 1st Level

When the calculator encounters a RTN instruction, it
returns control to the program segment or subroutine
that called the current level of subroutine. If the
caleulator encounters a RTN instruction when no levels
are active, the program stops. (RTN operates like HLT if
there are no subroutine levels active.)

4-12 Controiling the Sequence

LBLAA —» LBLEB
SBL AA j ‘I*
SELBEB [—
+ e
RTN RN |

L
k
3
3
-

Calling a
Subroutine
by Label

Calling a
Subroutine
by Address

The SBL (subroutine label) instruction transfers program
control to a subroutine that begins with a specified label.

To enter the SBL instruction, use the key sequence
[sBLlaa

where aa represents the label of the subroutine you
want to call.

After the subroutine has executed, program control
returns to the instruction following the SBL instruction.

The SBR (subroutine) instruction lets you transfer
program control to a subroutine by referring to the
subroutine’s program address,

To enter the SBR instruction, use the key sequence
[sBL]l nnnn

where nnnn represents the step address of the first
instruction in the subroutine.

After the subroutine has executed, program control
returns to the instruction following the SBR instruction.

(continued)

Controlling the Sequence 4-13

Using Subroutines ina Program (Continued) 1o i o
I 2
N
s i -
v - .

. : I- g xample This example illustrates a simple subroutine (labeled PZ)
Avolding To avoid some common problems that can occur when that multiplies the contents of the numeric display
Difficulties using subroutines in programs, keep these suggestionsin I__ register by 2, adds 1, and pauses for one second before
in Subroutines mind. E . g i i i

returning control to the main program. The main
N calls the subroutine to perform the caleulation
»= To prevent the accidental execution of a subroutine, I E;o&r: rTuribers 2and 9, P
make sure the program segment preceding it ends =
with a RTN, HLT, or transfer instruction. N - g =
- PC= Program Mnemonics Comments
= Ifthe subrou_tine needs an intermediate result, use I 0000 LEL AA Labels segment.
parentheses instead of [=] to perform the caleulation. f; - ! 0003 CLR Clears calculator
This avoids completing calculations in progress in the = 0004 2 SBL PZ Calls subroutine
program segment that called the subroutine. l 0008 g9 SBL PZ Calls subroutine again
- 0012 CLR Clears calculator
» If youneed to clear the display within a subroutine, 1& = ! 0013 HLT Stops program
use a numeric entry of 0 instead of [CLEAR]. 0014 LBL PZ Labels subroutine
clears all calculations in progress. 0017 (*2+1) Performs calculation
0023 PAL Pauses to display
= Youshould not use a subroutine to call itself, Usinga [E — ’ result
subroutine to call itself will generally result in a SBR 0024 RTN Returns from
STACK FULL error. : subroutine
F=a
I g the Run the program.
E. - ! Procedure Press Display
I Run the program [RUN] ¢ PGM > 5.
19.
Pms
I 0.
= |
=g
| wwuw.reher.de =
: I 4-15
4-14 Controlling the Seanence F = .

Programming the Function Keys

By “defining" the function keys, you can create a menu that
lets you transfer control to any of several locations In the
program, depending on the function key you press.

Definable
Function Keys

Storing the
Instruction

During normal ealeulator operation, the function keys
are defined by the system menus, For example, when
you press [CONV], the calculator defines the function
keys to provide a variety of conversions.

You can create your own function-key definitions by
executing a [DFN]instruction within a program (DFN
cannot be used as a keyboard command). The DFN
(define) instruction is followed by a field that specifies:

* The function key to define,

= The three-character message to display above the
key. (This lets you display information to describe the
definition of the key.)

= The label of the program segment to execute when
you press the function key. (The sequence of
instruetions following the label determines what
operations are performed when you press the key.)

The three-character message above the function key is

not displayed until program execution is stopped or

paused,

To include a DFN instructionin a program:

1. Press [2nd][DFN],

2. Press the function key ([Fi]-[Fs]) you are defining.

3. Enter the three-character message you want
displayed above the key. If your message has fewer
than three characters, use spaces as blank characters.

4. Enter the label where you want to start execution
when the function key is pressed.

4-16 Controlling the Sequence

=

r'

i

|-

o

- e 4

8)

—

m

m =

L

——— e —— —

v W 9 W

g W 8 W e W

Example

The following keystrokes store a DFN instruction in
program memory. This instruction displays ‘*SUB"
above [F1] and instructs the calculator to transfer
program execution to label AA when you press [F1].

Procedure Press Display

Define [F1]key [DFN] DFN
[F1] DFN F1
suB DFN F1:53UB@
AA DFN F1:53UB@AA

The calculator automatically accepts alpha characters
for the function description and label name. It also
supplies the **:"" after you enter the first character of the
function description and the ‘@'’ after you enter the
last character of the description. You can read this
instruction as "'Define key F1 as SUB at label AA. "

Controlling the Sequence 4-17

Creating a Function-Key Menu

When using 8 menu, you must design the pregram so that
each function key transfers control toa spec]fic program
segment, Typicaily, you place a HLT instruction al the end of
each segment to prevent the calculator from execuling past
the segment.

Building
a Menu

To create a menu in a program, use a separate DEN
instruction for each function key you want to define.
After the final function key is defined, puta HLT
instruction at the point in the program where you want
the definitions displayed.

The following illustration shows how you structure a
program for a three-function menu. Pressing [Fi], [F2], or
[Fa transfers program execution to label AA, BB, or CC,
respectively.

These instructions define
the menu shown below.

DFN F1:1ST@AA
DFN F2:2ND@ BB
DFN F3:3RD@CC
HLT

F1 [F2 [F3 [F4 [8

LBLAA
HLT
LBLBB
HLT
LBLCC

HLT

™o

o

Moo onoMomon
¥ 8 0 B 9 W

M- oI

W e W W s

Example
Program1

Running
Example1

Write a program that creates a menu with options to
calculate the third, fourth, or fifth root of a number.

PC= Program Mnemonics Comments
0000 'ROOTS’ Creates menu title
00056 DFN F1:3RD@AA Defines F1
0012 DFN FZ4TH@BB Defines F2
0019 DFN F3:5TH@CC Defines F3
0026 HLT Stops program and
displays menu
0027 LBL AA Labels segment
0030 (INV y™x 3) Calculates 3rd root
0036 HLT Stops program
0036 LBL BB Labels segment
0039 (INV y™x 4) Calculates 4th root
0044 HLT Stops program
0045 LBL CcC Labels segment
0048 (INV y™x 5) Calculates 5th root
0053 HLT Stops program
Test the program by calculating the third and fifth roots
of anumber.
Procedure Press Display
Activate the menu ROOTS
(PGM?» 3AD 4TH 5TH
Enter a number 8 &
Calculate 3rd root {3RD> 2
Enter a number 3125 3125
Calculate 5th root {8TH>» 5,
(continued)
Controlling the Sequence 4-19

Creating a Function-Key Menu (Continued)

Example
Program 2

Running
Example 2

This example lets you use the function keys to enter
sides a and b of a right triangle. When you press (CAL),
the program calculates the length of the hypotenuse. (If
the keyboard is not in lowercase lock, use [2nd] A and

B to enter the lowercase lettersaand b.)

PC= Program Mnemonics Comments

0000 ‘ENTER SIDES' Creates menu title

0011 DFN Fla @SA Defines F1

0018 DFN F2b @SB Defines F2

0025 DFN Fo:CAL@CH Defines F&

0032 HLT Stops program and
displays menu

0033 LBL SA Labels segment

0036 STO A HLT Storessideainreg. A

0039 LBL SB Labels segment

0042 STO B HLT Storessidebinreg. B

0045 LBL CH Labels segment

0048 (RCL A x™2 Calculates hypotenuse

0052 + RCL B x*2) SQR

0058 HYP=" Creates alpha message

0062 COL 16 MRG = Merges result

0066 HLT Stops program

Test the program by entering values that describe a
“*3-4-5"" triangle,

Procedure Press Display
Activate the menu ENTER SIDES

{PGM?» a b cAL
Enterside a 30 {a> 30.
Enterside b 40 40,
Calculate hypotenuse (CAL» HYP= 50,

4-20 Controlling the Sequence

™M ™ i ™ W oW T P T T O MR e TR

| T T B R |

1%

w e W

W a2 9 v 3

Restoring a User-Defined Menu

If you use & system menu while a menu of yours is displayed,
the system menu will replace your menu. You can rastore
your menu definitions by pressing [OLD).

Restoring
Your Menus

If you clear your menu by using a system-menu key or
pressing [F:CLR], you can restore the menu and any
previous alpha message by pressing [OLD]. You can also
restore the menu by executing asa program
instruction.

You cannot use to restore a system menu.
For example, suppose your program displays a menu
that lets you enter several variables, You want to

perform a metric conversion before entering one of the
variables. When you press [CONV], your menu is replaced
by the CONVERSIONS menu. After you make the
conversion, press torestore your menu.

Once a menu has been defined by a program, that menu
can be restored by until you:

= Replace the menu with another user-defined menu.

> Clear the menu with a clear function-key in struction,
as explained in the next section.

= Turn off the calculator,
* Run another program.

* Run the same program again, but stop execution prior
to defining the menu,

To restore a user-defined menu after any of the actions

listed above, you must re-execute the instructions that
created the menu.

Controlling the Sequence 4-21

Clearing Function-Key Definitions

The calculator has two program instructions for clearing the
function-key definitions.

How to Clear The caleulator has instruetions to elear function-key

Why Clear the There are several reasons fo clear the function keysina L .
Function Keys definitions either individually or all at once.

Function Keys? program.

» Inthe previous example, it is more efficient to clear

= Youmay want to define a function key for a limited
all the function keys before you redefine [Fi] and [F2].

time. By clearing the function key, you erase the
function description from the display and cancel the

function definition. = Inacase where two menus are almost identical,

except that the second menu has one or two fewer
selections, it is more efficient to clear the function
keys individually.

If you use more than one menu in the program, you
may need to clear some portion of the menu.

Use one of the following procedures within a program

Example For example, suppose you want to display the following
when you want to clear the function-key definitions.

menus at different points in a program. The first menu
has five options.

+ To clear all five definitions at once, use
[DFN] [CLEAR]

The mnemonic for [2nd] [DFN] is DFN CLR.

M ™M M ™ ™ oo o

The second menu has two options.
= Toclear the definition of a specific function key, use

[znd] | DFN] Fx [CLEAR]

where Fx represents the function key ([F1]-[Fs]) that
you want to clear.

When defining the second menu, you cannot redefine
just the [F1] and [F2] keys. You must also clear [Fal, [Fal,

and [Fg]. Otherwise, the second menu would display: The mnemonic for [DFN] Fix is DFN Fx

CLR.

Mmoo
_ BN BN BN BN BN BE BE BN B OB OB

4-22 Controlling the Sequence Controlling the Sequence 4-23

Listing Program Labels

Youcan list the addresses and names of labels used in
pregram memory by using the [LIST| (LBL) function.

Listing
Program Labels

Controlling
the Speed of
the Listing

Stopping
the Listing

4-24

To list the labels in the program currently in program
memory:

1. Press [LIST] <LBL>,

The display shows:

{1st) Begins searching for labels at address
0000.

{PC>» Begins searching for labels at the address
specified by the current setting of the
program counter.

2. S_elgct the point at which you want to begin the
listing. Unless you pause or stop the listing, the
calculator lists through the last label in program
memory.

The listing format shows the step address of the label
followed by the label name. If you have a printer
connected, the listing is also printed,

If youdo not have a printer connected, the calculator
pauses for one second before displaying the next label,
You can use the [=] key to pause the listing indefinitely
orto advance to the next label, as described on page
1-14 of this guide.

To stop a listing before it has finished, hold down the
BREAK] or keyuntil LIST: reappears in the display.

Controlling the Sequence

n
O N N N N N N N N N N N S S B §

m

Speeding Up Program Execution

The ASM (assemble) function can increase the speed of
programs that perform frequent transfers by label.
Assembled programs execute faster bacause the calculator
does not have to search for a label bafore lransferring control.

Assembling
a Program

W W 8 & wu e

N U N U9 W e B uwaw

The [asm](assemble) key sequence, executed asa
keyboard command or program instruction, converts all
program label references to the step addresses of those

labels.

= GTLinstructions are converted to GTO instructions.

= SBLinstructions are converted to SBR instructions.

= DFN instructions are converted to DFA (define
absolute)instructions. (You cannot enter the DFA
instruction from the keyboard.)

Before assembly After assembly

0000 LBL XX CLR 20

0006 STO 020

0009 LBL YY INC 020 39

0017 IF< 020 GTO 0034 CLR
0024 STO IND 020 GTO 0012
0031 LBL ZZ CLR STO 020
0038 DFA F1:ENT @0003 HLT

0000 LBL XX CLR 20

0006 STO 020

0009 LBL YY INC 020 39

0017 IF< 020 GTL Z CLR
0024 STO IND 020 GTL YY
0031 LBL ZZ CLR STO 020
0038 DFN FI:EENT@ XX HLT

To assemble a program currently stored in program
memory, press [asm].

Disassembling a program restores all references to labels
inthe program. You can then modify the program
without the editing difficulties associated with using
numerie transfer addresses.

To disassemble the program currently stored in program
memory, press [INV] [AsM].

4-25

Controlling the Sequence

Reference Section

Label

is
Labels

Go To Label

Setting the
Program
Counter

[LBL] an—Labels a program segment. Labels are used
in a program to mark locations for transfer functions.
[2nd][LBL]is ignored as a keyboard command.

{LBLy—Lists labels used in program memory. The
listing format shows the program address followed by
the label name. As a keyboard command, <LBL> lets you
start the label search for the list at the beginning of
program memory or at the current location of the
program counter. As a program instruction, <LBL?
always starts the label search for the list at program
address 0000.

The instruction mnemonic for {LBLY isLL.

[6TL] aa—As a program instruction, [GTL]
transfers execution to the instruction following label aa
in the current program or file. As a keyboard command,
|aTL]sets the program counter to the instruction
following label aa in program memory, but does not start
program execution.

[2nd] [GTL] mnnn—As a program instruction,

znd]| [GTL] transfers execution to program step nnnn
in the current program or file. As a keyboard command,
[inv] [aTL]sets the program counter to step nnnnin
program memory, but does not start program execution.

The instruction mnemenic for [INV] [GTLlis GTO.

You can use [aTL] and [INV] [GTLItoset the
program counter to a desired location before you enter
the learn mode. For example, if you want to edit step
0025 of program memory, first press INV] [GTL1 0025
to set the program counter to step 0025, Then press
¢PC) to enter the learn mode.

4-26 Controlling the Sequence

w9

e W

W W W w W W e W W

1%

. o

The Subroutine

Return Stack

subroutine

Labe

Subroutine

Subroutine return addresses are stored in a system
memory area called the subroutine return stack. Each
time an SBL or SBR instruction is executed, a return
address is added to the stack. Each time a return
instruction is executed, the return address that was
stored last is removed [rom the stack.

The calculator can store up to eight return addresses. If a
program exceeds this limit, the error message SBR STACK
FULL is displayed and the program stops. Any error that
stops program execution clears the subroutine return
stack.

[sBL] ma—As a program instruction, [sBL]stores
the address of the next instruction as a return address
and then transfers execution to the instruction following
label aa in the current program or file, As a keyboard
command, [sBL]starts execution at the labeled
segment in program memory, but does not store areturn
address. Using [sBLlas a keyboard command clears
the subroutine return stack.

[SBL] nnnn—As a program instruction,
[sBL]stores the address of the next instruction
asareturn address and then transfers execution to the
program segment beginning at address nnnninthe
current program or file. As a keyboard command,

[INV] [2nd] [sBL]transfers execution to address nnnn in
program memory, but does not save a return address.
Using [INV] [sBL] as a keyboard command clears the
subroutine return stack.

The instruction mnemonic for INV] [sBLlis SBR.

(continued)

Controlling the Sequence 4-27

Reference Section (Continued)

Return

Define Function
Key

Clear All
Function Keys

[RTN}—Transfers program execution to the return
address stored most recently. If no return addresses are
stored in the subroutine return stack, a return
instruction stops program execution just as a halt
instruction does.

As explained in the *'File Operations'’ chapter of this
guide, you can execute an entire programas a
subroutine after the program is saved as a file. If you
intend to execute a program as a subroutine, usea RTN
instruction at the end of the program instead of a HLT
instruction.

[DFN] Fa:aaa@aa—Defines function key Fir, where
Fxrepresents one of the five function keys, aaa
represents the three-character message to be displayed
above the funetion key, and aa represents the label to
which execution transfers when you press Fz.. The
caleulator supplies the ;" and '@’ characters as the
instruection is entered into program memory.

The function keys are activated after program execution
is stopped and remain in effect as long as the definitions
are visible in the display. If subsequent system-menu
operations replace the definitions, you can restore the
most recently defined function keys by pressing [OLD].

[DFN]isignored as a keyboard command.

[pFN][cLEAR|—Clears the definitions of all the
function keys and erases the function labels from the
display. After function definitions have been cleared by
this sequence, they cannot be recalled by [OLD].

[DFN] isignored as a keyboard command.

The instruction mnemonie for [DFN] is DFN
CLR.

4-28

Controlling the Sequence

W W W W W W W oW

B N 9 3 1%

3

Clear a Function
Key

Old Menu

Assemble
Program

Disassemble
Program

[DFN] Fix; [CLEAR]—Clears the definition of function
key Frand erases the function label from the display.
Once a function definition has been cleared by this
sequence, it cannot be recalled by [OLD]. [OFN] Fx
isignored as a keyboard command,

The instruction mnemonic for [DFN] Fr [CLEAR] is
DFN Fx CLR.

loLD|—Restores the most recently defined user menu and
user alpha message. does not restore user-defined
menus that have been cleared by DFN CLR or DFN Fx
CLR.

does not restore system menus.

[AsM]l—Changes all label addressing used by the
program in program memory into direct numeric
addressing. Assembling converts GTL instructions to
GTO, SBL instructions to SBR, and DFN instructions to
DFA. You cannot enter the DFA (define function
absolute) instruction from the keyboard.

[inv] [asm]—Disassembles a previously assembled
program. This restores label addresses and converts GTO
instructions to GTL, SBRinstructions to SBL, and DFA
instructions to DFN. Instruetions that were stored
originally with numeric addressing are not converted to
label addressing,

Controlling the Sequence 4-29

